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Flow and dispersion through a close-packed fixed bed of spheres
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Fluid flow through a close-packed fixed bed of spheres in a face-centered cubic arrangement is investigated
in numerical simulations using a lattice-Boltzmann formulation. The dispersion of a tracer gas is studied both
experimentally and numerically. At low Reynolds numbers=<Ré4, the flow is steady with a distribution of
normalized local kinetic energies that follows a power law over roughly three orders of magnitude. Conse-
quently the “stagnant” zones play a significant role in determining transport through the packed bed in
contrast with the dangling ends for the analogous electrical transport problem, where the distribution of local
currents is log binomial. At higher Reynolds numbers transitions to time-oscillatory and chaottoaltly-
lently) varying flows are predicted to occur with a crossover to a log-normal distribution of local kinetic
energies. At the onset of transverse velocity fluctuations the simulated trajectories of tracer particles can cross
planes of symmetry, resulting in an abrupt enhancement of dispersion. The dispersion of tracer particles in the
time-oscillatory and chaotic varying flows is predicted to be Fickian in the far field. Model predictions for
dispersion in a chaotic flow with Rel00 are shown to be in good agreement with experiment.

PACS numbes): 47.55.Mh, 47.27i, 87.15~v

[. INTRODUCTION cubic array of spheres with finite difference resfi@é Cur-
rently, it is the only means of accurately predicting flows in

This paper reports on numerical studies of fluid flow complex three-dimensional geometries. Of particular interest
through a close-packed fixed bed of spheres in a facewill be the distributions of local kinetic energy that can have
centerd-cubic arrangement. Also investigated, both experimportant implications for transport through the packed bed
mentally and numerically, is the dispersion of tracer gasand the transition from steady to turbulent flow.
Understanding flow and dispersion through packed-beds is of The experimental setup used to investigate the dispersion
importance in several technological proces@&eg., filtration,  of a tracer gas is described in Sec. 1. This is then followed in
catalysis, and chromatographyt could, for example, lead sec. |1l by a brief description of the lattice-Boltzmann for-
to improved practices in the food industry where chemicalyyjation and the numerical simulation of tracer-gas disper-
agents are applied to stored produce, such as potatoes, gradfon. Predictions for the fluid flow and dispersion of a tracer
and fruit. o . gas are discussed in Sec. IV. The experimental measure-

Attention is focussed primarily on flows with Reynolds ments of the mean concentrations along with comparisons

number, Re=Ua/v up to about 100, whera is the sphere ith model predictions are then presented in Sec. V. Conclu-
radius,U is the average velocity throughout the bed, angl  gjons are drawn in Sec. VI.

the kinematic viscosity of the fluid. In contrast with the much
studied[1—4] low-Reynolds-number limit (R&€1), where
the flow is stationary and where dispersion is dominated by
molecular diffusion, flow and dispersion at moderate Rey-
nolds numbers has received little attention. A notable excep- The experimental set up is shown schematically in Fig. 1.
tion is the experimental study of Wignet al. [5] who, by It is comprised of closely packed polystyrene spheres, with
observing a dye tracer released at the surface of a singlen approximate diameter of 45 mm, in a face-centerd-cubic
sphere in a packed bed, noted a transition to unsteady flow$cc) arrangement with a principal axis in the=y =2z direc-
for Re in the range 45-60. Transitions to unsteady flowgion. This was achieved by first forming a close-packed hori-
have also been observed in numerical simulations of flowgontal layer of spheres; those centers form a triangular lat-
through packed beds of spheff@d and in numerical simu- tice. In the centers of these triangles a second layer of closely
lations of two-dimensional flows through periodic and ran-packed spheres was then fitted. The addition of a third layer
dom arrays of aligned cylindefd]. is now possible in two different ways: either the spheres may
To simulate moderate Reynolds numbers flows, we willbe placed in the triangles of the second layer so that each
use a lattice-Boltzmann formulation. This method has beesphere in the third layer is directly above spheres in the first
tested by comparing its predictions for a wide variety oflayer or they may be placed in an alternative position which
Stokes flow problems with the results of a multipole methodis not directly above the first layer. The former type of struc-
and by comparing the predictions for finite-Reynolds-ture is that of a close-packed-hexagonal arrangement, while
number flows past a single row of cylinders and through &he latter is the fcc structure. The fcc structure was adopted
because unlike the hexagonal arrangement there are no direct
channels for dispersion orientated along the gradient in ap-
*Corresponding author. FAX:+44 (0)1525 860156. Electronic  plied pressure, which runs from the top to the bottom of the
address: andy.reynolds@bbsrc.ac.uk arrangement. The packed bed consisted of 16 layers, with the

Il. EXPERIMENTAL SETUP
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FIG. 1. Schematic representation of the experimental setup. Also shown is the line located 20 mm below the first layer of spheres along
which measurements of gas concentration were made.

spheres in the 16th layer lying directly above those in thesampler continuously drew off the tracer-gas-air mixture at a
first layer. flow rate equal to the velocity of the air flow. The sampler

The pack bed was enclosed within a hexagonal vessehad a response timg @ s and a recovery time of 2 s. Sta-
with across-corners width equal to 17 sphere diameters, cotistically stationary profiles of mean gas concentration were
structed from plywood, and lined with a flexible polymer- obtained from 3-min time histories of measured concentra-
based material into which the contact surfaces of adjacertion. Measured concentrations are accurate to with96.
spheres could be imbedded, thus preventing leakage of air

and tracer gas there. The first and corresp(_)nd_ing equivalent Ill. NUMERICAL SIMULATIONS
layers consisted solely of whole spheres whilst in the second,
third, and corresponding equivalent layers partial spheres A. Lattice-Boltzmann simulations

were required adjacent to the inside of the vessel to maintain This section provides a brief description of the lattice-

constant packing density and arrangement and to preveRs|zmann methodLBM) and its application to the simula-
leakage. The bottom of this packed bed was held in place by, of flows through close-packed beds of spheres. More
a punched plate having holes of diameter 3 mm with centergeajled descriptions of the particular lattice-BoltzmanB)
regularly spaced at 5-mm intervals in a triangular arrangesomulation adopted, commonly denoted ByQs, can be
ment. found in Qianet al.[9] and Chen and Doolef0].

The influence of the surroundings on the air flow through |, the LBM, a discrete analog of the linearized Boltzmann
the rig was reduced by the placement of two closely paCke@quation

beds of plastic granules with approximate diameter 3.5 mm,

above and below the bed, and by conducting the experiments 1

within a closed temperature-controlled room. Air was sucked ~ fi(x+ ¢, t+1) = fi(x,t)=— —[fi(x,t) = 0] (@
through the arrangement using an electric fan and the result-

ing pressure difference across the packed bed of 2 Pa Wf solved for the number density of molecules at nedet

imet, f;(x,t), of a gas of “fictitious” molecules that trans-
ate from node to node on a cubic lattice with a discrete set
of velocitiesc; . In the present model there are six velocities
of speed 1 corresponding to tli&00) directions, eight ve-
locities of speed’3 corresponding to the€l11) directions and

ne “rest” particle of speed 0. The distributioh(x,t) is

monitored using an inclined manometer. The upper be
served to make uniform the air flowing into the packed be
of spheres.

A tracer gas (S§ was released continuously and isoki-
netically as a Sgair mixture (10% Sk by volume at 0.2
mls™! from a pipe with internal diameter-3 mm, at a
height of about 1.5 mm above the central sphere in the 16t ; : -
(top) layer. SF, has a density op=6.26 kg m ® and is non- :Ia'jedb to the fluid densitp and the momentum density,
buoyant. SEwas chosen as the tracer gas because of ease of ™ y
detection. The effects of nonbuoyancy are not expected to be
significant as the predicted settlement time is much longer p=> i, j=2 fic, 2
than transport times due to advection by the fluid. [ [

The concentrations of gas emerging from the packed bed
was then measured and recorded at a height 20 mm beloand the nondimensional kinematic viscosity of the fluits
the first(bottom) layer, along the line depicted in Fig. 1. The related to the nondimensional relaxation timéy v= (27
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—1)/6. Appropriate forms for equilibrium distributions, within the cycle varied by less than 0.01%. Quasiperiodic
f74x,t), are taken from Qiaet al. [9], (i.e., flows which did not display periodicity on the time
scales of the simulations but which had a discrete Fourier
fet o 14 = (cu)+ - 1, 3 spectrum and chaotic solutions were taken to be converged
i hp c? G-u Z’g’(c‘ u EEU ' when both the mean flow and the velocity variance varied by
less than 1% during the last 25% of the run. Typically,
wheret;=2/9 for rest particles, 1/9 for particles with speed 200 000 time steps were required. It should be noted here and
1, and 1/72 for particles with speefl. The speed of sound throughout the paper that because of the difficulties associ-
cs=1N3. ated with the correct identification of quasiperiodicity, the
Experimental measurements of dispersion, presented iterm “quasiperiodicity” is used in the aforementioned sense
Sec. V, indicate that the dispersion of the tracer gas did nolvhich does not distinguish between the strict definition of
extend significantly in the lateral direction beyond aboutquasiperiodicity in terms of a finite number of incommensu-

three sphere diameters from the release position. This igate Fourier modes and time histories containing many dif-
much less than the half-width of the eXpeI’imental rig, indi-ferent commensurate modes.

cating that edge effects, arising from the finite size of the
packed bed, can be neglected. Consequently in the numerical
simulations the packed bed can be taken to extend infinity in B. Simulation of particle trajectories
all directions. This was implemented by modeling only flow i i
within the basic fcc unit cell, subject to periodic boundary ~'Nere are two possible approaches to the modeling of
conditions. The difficulties associated with comparing pre-Particle dispersion. In the Eulerian approach a diffusion-
dictions for dispersiomithin the packed bed with the mea- a@dvection equation for the time evolution of a scalar is
sured dispersion beneath the bed is discussed later, in Sec. $elved whilst in the Lagrangian approach mean concentra-
The pressure does not vary significantly across the unitions of a scalar are calculated by ensemble averaging over
cell and so its effects are well approximated by a constanthe simulated single independent tracer-particle trajectories.
body forceF. This was implemented by calculating the equi- In this study the Lagrangian approach is adopted because the
librium distribution functions with an altered fluid velocity boundary conditions do not need to be speciéigatori in an
u+ rF/p, rather than with the actual fluid velocity[11]. ad hocfashion, the approach does not introduce numerical
Each solid sphere is defined by a spherical surface whicHiffusion, and because it can be readily extended to “heavy”
cuts some of the links between the lattice nodes. The fictiand Brownian particles.
tious gas molecules moving along these links were reflected The trajectories of tracer particlesy(,u,) were simulated
so that, in a single time step, they return to the lattice nodeby numerical integration of the tracer advection equation
from where they came with an opposite velocity. As a result
a no-slip velocity condition is imposed midway along the %:u (X ) ()
link. It is this easy implementation of the no-slip velocity dt PP
condition by the “bounce-back boundary scheme” which
makes the LBM ideal for simulating fluid flows in compli-
cated geometries. The bounce-back scheme is, however, onlyhere to filter out the effects of the staggered momentum,
first order in numerical accuracy at the bound@t®] and so  inherent in the solution to thB ;Q,5 model[14], the particle
degrades the LBM which for the interior nodes is secondvelocity u, is taken to be the local fluid velocity, temporal
order in numerical accuracy. Bounce-back schemes that amveraged over two successive iterations of the lattice Boltz-
second-order accurate have been propp$adpbut cannot be  mann model. This quantity is known only at the nodes of the
readily implemented for complicated geometries. For thiscomputational grid and at discrete times. An approximation
reason they are not employed here. to this quantity at the particle location at tihevas obtained
The discrete representation of the spheres becomes mobg linear interpolation from the grid nodes to the particle
spherical with the increasing sphere-radius-to-node spacinigcation and from the solutions for timésandt’ + 1 to time
ratio. However, the size of the lattice required to obtain act wheret’ <t<t'+ 1.
curate results is primarily controlled by the need to resolve Close to the boundaries the spatial resolution of the grid is
the flow within the voids between neighboring spheres. Thenot sufficient, nor can it ever be, for an accurate determina-
results of numerical simulations indicated that when voidtion of particle trajectories. These inaccuracies, which are
cross-sectional areagpproximately triangular in shape compounded by the interpolation, can result in the nonphysi-
contained more than abogtx 25X 25 nodes, grid indepen- cal deposition of some tracer particles. To overcome this
dent resultserrors of less than 5%were obtained for Re difficulty the flow at the boundary nodes, which is predicted
<120. This was achieved by having 20Q00x 100 nodes to vanish, was given a small normal outward component.
within a unit cell. The maximum mean velocity was less thanThe magnitude of this normal component was taken to be
the speed of sound thus ensuring incompressible fluid dyeonstant throughout the flow domain, equal to the smallest
namics. value which prevented all nonphysical deposition. This was
The initial value problem was solved in which the fluid typically two or more orders of magnitude less than the mag-
velocity was zero throughout the domain and a body forcenitude of the velocity at the nearest node within the flow.
was applied at timeé=0. In the case of periodic solutions, The simulated trajectories of tracer particles were found to
the calculations were continued until the mean flawver-  be insensitive to a tenfold increase in the value of the out-
aged over the flow domajirat successive equivalent times ward velocity component.
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FIG. 2. The distribution of normalized local kinetic energy for a
steady flow with Re1.

IV. PREDICTED FLOWS AND TRACER-PARTICLE
DISPERSION >

The nature of the flow, whether steady, time oscillatory, =
or chaotic depends on the Reynolds number Re. Here Re it
based on the radius of a sphere and the magnitude of the
volumetrically and temporally averaged fluid velocity within
the voids. The root mean squaiens) of the magnitude of

the volumetrically averaged fluid velocity is used to define a 5 ' y T T ,
second Reynolds number Recharacterizing the temporal s 16 v 2 1 20 x 10*
fluctuations in velocity. .

For low Reynolds numbers, Rel4, the fluid flow is pre- e

dicted to be steady but very complex due to the complex
geometric structure of the packed bed which creates very
tortuous pathways for fluid flow. A natural quantity to statis-
tically characterize the fluid flow associated with each node
in the computational grid is the kinetic energyk
=1/2pu-u. Figure 2 shows that the distribution of normal-
ized kinetic energ¥e = k/K,ax, Wherek,,,.x denotes the maxi-
mum kinetic energy. It is seen that over roughly 3 orders of
magnitude (10*<E<10 19 the distributionn(E) of E
follows a power law withn(E)~E~ ¢, where «=0.64
+0.05. Intriguingly, the same exponent= 0.64+ 0.05, was
found[15] to characterize the distribution & in the Stokes ‘0
flow forming the “conducting backbone” at the threshold of 9 i 7 ® 1 20 x 10*
percolation in two-dimensional random porous media. An-

dradeet al. [15] suggested that this power law distribution n

indicates that the local kinetic energy is sensitive to the ge-

ometry of the pore structure. Consequently, the “stagnant” FIG. 3. Predicted fluid velocities histories @5,0,0 for a pe-
zones play a significant role in transport through the packedodic flow with Re~22.0 (bottom), a quasiperiodic flow with Re
bed, in contrast with the dangling ends for the analogous=29.5(middle), and a turbulent flow with Re113(top). Theu and
electrical transport probleii6,17). v components of velocity aftem iterations of the LBM are indi-

In addition to the steady flows, six other flows were simu-cated by solid and dashed lines, respectively. To remove the “stag-
lated: a flow with Re=15.4, which was time periodic in the gered momentum,” velocities have been averaged over two succes-
direction of the applied pressure gradient and steady in th&ve iterations.
transverse directions; flows with R49.8 and Re-22.0
which were time periodic in both the longitudinal and trans- The corresponding phase diagram is shown in Fig. 4. The
verse directions; a “quasiperiodic” flow with Re29.5; and same sequence of transitions but with different critical Rey-
chaotic (low-Reynolds-number turbulentflows with Re  nolds numbers has also been reported by Hill and K&th
~42 and Re=113. Characteristic features of the these flowswho used a LBM to simulate flows through packed beds of
are shown in Fig. 3. spheres in a fcc arrangement with the gradient in applied




3636 A. M. REYNOLDS, S. V. REAVELL, AND B. B. HARRAL PRE 62

25— 4

20

Re

l°g,, n

104

-16 -12 -8 -4 o]

120 (long)Q

FIG. .4' _Phase diagram. Calculat_|ons are presented by solid dots. FIG. 5. The distribution of normalized local kinetic energy for a
The solid line serves only as a gwd_e for the eye. The _symﬁols_ chaotic flow with Re=113.
P_, P, Q. P., andC denote flows which are stationary, time peri-
odic in the Iongitudinal direction, time periodic in both the Iongitu- quantities are expressed in terms of the fundamental variable
dinal and transverse directions, quasiperiodic, and chaotic. x=Ink/In k.. The log-normal distribution leads naturally

to an infinite set of exponents being required to describe the

pressure to be in the on-ax{300 direction. For this case, moments of kinetic energy. Consequently in stark contrast
unsteadiness first occurs at-R82.4[18]. This indicates that  with the steady flow case, the kinetic energy distribution can-
the on-axis flow is more stable than tli#ll) flow. For  not be characterized by a unique velocity scale.
close-packed arrangements of spheres it is the large veloci- Several factors may contribute to the dissimilarities be-
ties in the gaps rather than symmetry breaking of the flowtween the scaling of the steady and turbulent flows. At low
about any single sphere due to the velocity disturbances ofalues of Re, there is a tendency for the fluid at the local
the other spheres or wake instabilities which destabilize theoid scale to preserve the parabolic shape of the velocity
flow. The velocity in the gaps is related to the reciprocal ofprofiles even when the fluid is confined to very tortuous
the effective cross-sectional area of the gap, whichvi® ( pathways. At high values of Re, however, the irregular ge-
— m/2)R? when the applied gradient in pressure is (h#1) ometry is very effective in producing sudden and dramatic
direction and (4 w)R? when it is in the(100) direction, changes in the directions and magnitudes of the fluid veloci-
whereR is the sphere radius. The critical Reynolds numbetties, thus distorting their parabolic profile at the local level of
for the (111 direction can therefore be expected to be ap-the void space. Furthermore, at high values of Re the non-
proximately ¢/3—w/2)/(4—m)~5.3 smaller than for the linear advection term in the Navier-Stokes equations become
(100 direction, which is not too dissimilar from the results relevant and can lead to vortices and flow separation. An
of the numerical simulations. example of the energy-frequency speci(a) for the cha-

Although the results of numerical simulations suggest thabtic velocity fluctuations is shown in Fig. 6. The spectra has
the branch of the phase diagram identified in Fig. 4 is robusa dissipation range characterized By-» ° and there is
to perturbations with amplitudes large compared to the amsome suggestion of an inertial subrange, where over a narrow
plitude of the flow oscillations, it is possible that other less-range of frequenciesS~w °°. The absence of a well-
stable branches also exist, as is the case when the applidéfined inertial subrange is not surprising given the low Rey-
pressure is in th€100) direction[18]. There was no indica- nolds number of the flow and the strong anisotropy of the
tion of their being any period-multiplying transitions, in stark larger scales of motion coupled with the presence of a gra-
contrast with the results of numerical simulations using adient in the mean flowW19].
LBM for two-dimensional flows through periodic arrange- In the absence of molecular diffusion, tracer particles
ments of cylinderg7]. Koch and Ladd 7] reported observ- emitted from a point source into a steady flow cannot dis-
ing period doubling when the pressure gradient is near thperse whilst for the time-oscillatory flows, tracer-particle dis-
primary axis and transitions to odd multiples when the prespersion is severely constrained because there cannot be any
sure gradient is along the diagonal of the array. transport across planes of symmetry. However, there can be

Figure 5 shows that in contrast with the steady flow, thetransport of tracer particles across planes of symmetry when
normalized local kinetic energy of the chaotic flow has athe transverse component of fluid velocity fluctuates because
log-normal distribution over roughly 3 orders of magnitude then the instantaneous velocity field is no longer constrained
in analogy with the log-binomial distribution for the local by symmetry. Thus, an abrupt increase in dispersion is pre-
currents found in the corresponding random resistor networklicted to accompany the onset of transverse velocity fluctua-
[16,17]. The distinction between the binomial distribution tions.
and the familiar Gaussian approximation is only of impor-  The predicted dispersion of tracer-patrticle trajectories in a
tance when calculating higher moments. This arises becausine-oscillatory flow with Re=22 is shown in Fig. 7. The
the moments are actually exponential moments when akhnisotropy of the dispersion arises primarily from the par-
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FIG. 7. Locations in the plane containing the lower poles of
spheres in the first layer through which the simulated trajectories of
0 tracer particles passed for a time-oscillatory flow with~R2.0.
The particles were released from a continuous source located just
above the central sphere in the 16th layer.

For the major axis of lateral dispersiar=0.51+ 0.01 whilst

-5/3 for the minor axisp=0.3+0.01. The far-field dispersion is
not, however, anomalous but Fickian, i.e2xt wheret is
the transit time.

-5 For the chaotic flow with Re113, the spread of tracer
particles becomes isotropic beyond the third horizontal plane
of spheres beneath the source andd'?, as shown in Fig.

oz & s e 10 8. In the far field diffusion is again Fickian and so, contrary

to most cases of dispersion in inhomogeneous turbulence,
can be described by a diffusion-advection equation. This

Fickian characteristic is most probably a consequence of the

length scales and time scales on which transport occur being

=10

=156

n S,

~20

much larger than the scales of variations in the velocity field
& experienced by the tracer particles. In this context it is note-
worthy that dispersion due to molecular diffusion in Stokes
R flows through porous media is also predicted to be Fickian
) ™ =5/3 [3,20.
_— 207 05
=20 _5 16 i /',)//“/
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FIG. 6. Energy-frequency spectBiw) for the velocity fluctua- & %47 L X 0.3
tions at(0.5,0,0 in the chaotic flow with Re-113. Inertial sub- i . /-/,,,, X - 0
ranges and dissipation ranges are indicated. 007 .7 x++++
1 . S T
~0.4- —r
ticular time-oscillatory mode of the flow realized in the nu- {
merical simulations. Two components of this flow have dis- -0.8+—— | ‘ , . ‘ , ‘ |
similar amplitudes, indicating that at least two such unsteady 0 ! 2 3 4 5
modes are possible. The anisotropy is also a consequence o, In(d/r)

the periodicity of the tracer-particle tracks, a Lagrangian 5 g The rms spread of tracer partickesn a periodic flow
property of the fluid, being different from the periodicity of | i re~22 (X, major axis of lateral dispersiont, minor axis of

the Eulerian flow. This can arise when both the streamwisgiar dispersionand the chaotic flow with Rel13 (@). Dis-

and lateral components of velocity are unsteady. Figure ncegl are measured from the source in the direction normal to the
shows that in the far field the rms spread of tracer partieles norizontal planes of spheres. Model predictions are shown for dis-
closely follows a power lawr~d”, whered is the distance persion on the horizontal planésetween the first and 100ton-
from the source measured along the center line of the plumgining the centers of the spheres. The power-law regimes®®
(i.e., measured normal to the horizontal planes of spheresando~d®2 are indicated.
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5 V. MEASURED AND PREDICTED MEAN
% ° CONCENTRATIONS

44 s Flow within the experimental packed bed is predicted to
have Re=113 and Ré&~5.4 and be chaoti¢weakly turbu-
lent). Replicate profiles of mean concentrations measured 20
mm beneath the first layer of spheres are shown in Fig. 9.
| # The replicates were made at 24 h intervals during which time
X the air flow through the packed bed was maintained. The
2] "{ source of the scatter in the experimental data is unclear but
could indicate that very-low-frequency components are
¥ present in the flow.
b * A comparison of predicted and ensemble averemeer
_ 4 + the six replicatesmeasured concentrations is shown in Fig.
f 10. The measurements were made beneath the packed bed in
° e the wakes generated by the spheres in the first layer. This
accounts for the nonvanishing measured concentrations in
d/r locations directly beneath the spheres. In contrast and be-
cause of the imposition of periodic boundary conditions,
FIG. 9. Six replicate profiles of mean concentratiemseasured ~Model predictions are shown for locations within the plane
20 mm below the lower poles of the spheres in the first layer.containing the lower poles of the spheres in the first layer. To
Distancesd are measured from the central sphere in the first layeccount for the difference between volumes of free space
along the line shown in Fig. 1. The source strength is denotery by beneath the packed bed in the experiment and the void vol-
and the sphere radius loyMeasured concentrations are accurate toumes between the spheres in the computational domain, pre-
within +2%. dicted concentrations have been reduced by a fajdA o
=1-=/(2v3), where A, is the cross-sectional area of a
Numerical instabilities inherent in the LB approach pre-void formed between three neighboring spheres in the appro-
clude the possibility of simulating directly flows with Re priate horizontal plane ané , is the area of the triangle
>100. To test whether Fickian behavior persists at highedefined by the centers of these spheres. In spite of these
Re, a subgrid moddl21] was utilized with a Smagorinsky differences, it is seen that the agreement between measured
constant,C,=0.1. Inthis approach a space-filtered particle and predicted mean concentrations is very good. Particularly
distribution is defined those dynamics are governed by avell predicted is the extent of the dispersion and the gradi-
LBM with a space-dependent relaxation time. Using thisents concentration.
subgrid model a flow with Re2200 was simulated. The
dispersion of a tracer, due to the resolved scales of turbulent
fluid motions, was found to remain Fickian in the far field.
Consequently, if a transition to anomalous dispersion does This paper has reported numerical studies of fluid flow

"t

10" x c/c.
[ ]
»mx e
¥ e

VI. CONCLUSIONS

occur then it is predicted to occur at larger Re. through a close-packed bed of spheres and on experimental
5_
E . 4®
L]
o L]
SO X ® e
lo °
<r><
=) 24 .
L]
1 X
[
* X
0 T T T — |
0 1 2 3 4 5 6
d/r

FIG. 10. A comparison of ensemble-averaged measured concentrd@pB88 mm below the lower poles of the spheres in the first layer
and predicted X) volume-averaged concentrations in the plane containing the lower poles of the spheres in the first layer. The line and its
symmetry equivalents along which the measurements and predictions were made is indicated. Dista@cesasured from the central
sphere and have been rendered nondimensional using the sphererradlams shown(left) are the locations in the plane containing the
lower poles of the spheres in the first layer through which the simulated trajectories of tracer particles passed. The source strength is denoted
by c;. Measured concentrations are accurate to with2%6.
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and numerical studies of tracer-particle dispersion. The norgous electrical transport probleft6,17. Consequently, the
malized local kinetic energy of the steady flow, which existskinetic energy distribution cannot be characterized by a
at low Reynolds numbers, Rd4, is predicted to have a unique velocity scale.
power-law distribution. This indicates that the stagnant zones Tracer dispersion in the flows with fluctuating transverse
play a significant role in transport through the packed bed/elocity components is predicted to be Fickian in the far field
and so provides a three dimensional companion for the twoand S0, contrary to most cases of dispersion in inhomoge-
dimensional counterexample to the paradigm of electrical€0us turbulent flows, can be described by a diffusion model.
flow in random resistor networks and transport of mass an(I)/Iodel_predlctlons for tracer-particle _dlsper5|on in a chaotic
momentum in disordered porous me@iz). rovy with Re~100 were found to be in close agreement ex-
The steady flow is predicted to become unsteady at RBEMMeNt.
~14, resulting in time-periodic oscillations in the component
of velocity parallel to the direction of the gradient in applied
pressure. At Re 20, the transverse components of velocity = This work was supported by the BBSRC through ROPA
are predicted to fluctuate, resulting in quasiperiodicity forGrant No. 978945. Special thanks goes to Mr. Terry Layton
Re>22 and eventually chaos at Rd0. It was suggested and Mr. John Tilcock for their assistance in the design and
that this sequence of transitions, but not the critical Reynoldsonstruction of the experimental rig. Dr. A. M. Reynolds
numbers, is independent of the direction of the gradient irwould also like to thank Reghan Hill of Cornell University
applied pressure. The normalized local kinetic energy of théor many helpful discussions on his application of the lattice-
chaotic flow has a log-normal distribution in analogy with Boltzmann method through spheres in close-packed arrange-
the log-binomial distribution of local currents in the analo- ments.

ACKNOWLEDGMENTS

[1] H. C. Brinkman, Appl. Sci. Res., Sect. B 27 (1947). Phys. Fluids7, 203(1995.
[2] H. Hasimoto, J. Fluid Mechb, 317 (1959. [14] D. Kandhai, A. Koponen, A. Heokstra, M. Kataja, J. Timonen,
[3] D. L. Koch and J. F. Brady, J. Fluid Mech54, 399 (1985. and P. M. A. Sloot, J. Comput. Phys50, 482 (1999.

[4] D. L. Koch and J. F. Brady, J. Fluid Mech80, 387 (1986. [15] J. S. Andrade, Jr., M. P. Almeida, J. Mendes Filho, S. Havlin,
[5] T. H. Wegner, A. J. Karabelas, and T. J. Hanratty, Chem. Eng. B. Suki, and H. E. Stanley, Phys. Rev. L&, 3901(1997.

Sci. 26, 59 (1971). . s
" [16] L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Re@31B
[6] R. J. Hill and D. L. Koch, Bull. Am. Phys. Soct4(8), 69 4725 (1985,

[7] ([;L.gl?.gkoch and A. J. C. Ladd, J. Fluid MecB49, 31 (1997. [17] L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Re34B
[8] A. J. C. Ladd, J. Fluid Mect271, 311 (1994. 4656 (1986.
[9] Y. H. Qian, D. d’Humieres, and P. Lallemand, Europhys. Lett.[18] R. J. Hill (private communication

17, 479(1992. [19] J. C. R. Hunt and J. C. Vassilicos, Proc. R. Soc. London, Ser.
[10] S. Chen and G. D. Doolen, Annu. Rev. Fluid Me@&®, 329 A 343 183(199)).

(1998. [20] D. L. Koch, R. J. Hill, and A. S. Sangani, Phys. Fluitie,
[11] J. M. Buick, Ph.D. thesis, University of Edinburgh, UK, 1997 3035(1999.

(unpublishet [21] S. Hou, J. Sterling, S. Chen, and G. D. Doolen, Fields Inst.
[12] I. Ginzbourg and P. M. Adler, J. Phys. 4] 191 (1994. Commun.6, 151 (1996,

[13] D. R. Noble, S. Y. Chen, J. G. Georgiadis, and R. O. Buckius,



