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Flow and dispersion through a close-packed fixed bed of spheres

A. M. Reynolds,* S. V. Reavell, and B. B. Harral
Silsoe Research Institute, Wrest Park, Silsoe, Bedford MK45 4HS, United Kingdom

~Received 14 March 2000!

Fluid flow through a close-packed fixed bed of spheres in a face-centered cubic arrangement is investigated
in numerical simulations using a lattice-Boltzmann formulation. The dispersion of a tracer gas is studied both
experimentally and numerically. At low Reynolds numbers, Re<14, the flow is steady with a distribution of
normalized local kinetic energies that follows a power law over roughly three orders of magnitude. Conse-
quently the ‘‘stagnant’’ zones play a significant role in determining transport through the packed bed in
contrast with the dangling ends for the analogous electrical transport problem, where the distribution of local
currents is log binomial. At higher Reynolds numbers transitions to time-oscillatory and chaotically~turbu-
lently! varying flows are predicted to occur with a crossover to a log-normal distribution of local kinetic
energies. At the onset of transverse velocity fluctuations the simulated trajectories of tracer particles can cross
planes of symmetry, resulting in an abrupt enhancement of dispersion. The dispersion of tracer particles in the
time-oscillatory and chaotic varying flows is predicted to be Fickian in the far field. Model predictions for
dispersion in a chaotic flow with Re;100 are shown to be in good agreement with experiment.

PACS number~s!: 47.55.Mh, 47.27.2i, 87.15.2v
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I. INTRODUCTION

This paper reports on numerical studies of fluid flo
through a close-packed fixed bed of spheres in a fa
centerd-cubic arrangement. Also investigated, both exp
mentally and numerically, is the dispersion of tracer g
Understanding flow and dispersion through packed-beds
importance in several technological processes~e.g., filtration,
catalysis, and chromatography!. It could, for example, lead
to improved practices in the food industry where chemi
agents are applied to stored produce, such as potatoes, g
and fruit.

Attention is focussed primarily on flows with Reynold
number, Re5Ua/n up to about 100, wherea is the sphere
radius,U is the average velocity throughout the bed, andn is
the kinematic viscosity of the fluid. In contrast with the mu
studied @1–4# low-Reynolds-number limit (Re!1), where
the flow is stationary and where dispersion is dominated
molecular diffusion, flow and dispersion at moderate R
nolds numbers has received little attention. A notable exc
tion is the experimental study of Wigneret al. @5# who, by
observing a dye tracer released at the surface of a si
sphere in a packed bed, noted a transition to unsteady fl
for Re in the range 45–60. Transitions to unsteady flo
have also been observed in numerical simulations of flo
through packed beds of spheres@6# and in numerical simu-
lations of two-dimensional flows through periodic and ra
dom arrays of aligned cylinders@7#.

To simulate moderate Reynolds numbers flows, we w
use a lattice-Boltzmann formulation. This method has b
tested by comparing its predictions for a wide variety
Stokes flow problems with the results of a multipole meth
and by comparing the predictions for finite-Reynold
number flows past a single row of cylinders and throug

*Corresponding author. FAX:144 ~0!1525 860156. Electronic
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cubic array of spheres with finite difference results@8#. Cur-
rently, it is the only means of accurately predicting flows
complex three-dimensional geometries. Of particular inter
will be the distributions of local kinetic energy that can ha
important implications for transport through the packed b
and the transition from steady to turbulent flow.

The experimental setup used to investigate the disper
of a tracer gas is described in Sec. II. This is then followed
Sec. III by a brief description of the lattice-Boltzmann fo
mulation and the numerical simulation of tracer-gas disp
sion. Predictions for the fluid flow and dispersion of a trac
gas are discussed in Sec. IV. The experimental meas
ments of the mean concentrations along with comparis
with model predictions are then presented in Sec. V. Con
sions are drawn in Sec. VI.

II. EXPERIMENTAL SETUP

The experimental set up is shown schematically in Fig
It is comprised of closely packed polystyrene spheres, w
an approximate diameter of 45 mm, in a face-centerd-cu
~fcc! arrangement with a principal axis in thex5y5z direc-
tion. This was achieved by first forming a close-packed ho
zontal layer of spheres; those centers form a triangular
tice. In the centers of these triangles a second layer of clo
packed spheres was then fitted. The addition of a third la
is now possible in two different ways: either the spheres m
be placed in the triangles of the second layer so that e
sphere in the third layer is directly above spheres in the fi
layer or they may be placed in an alternative position wh
is not directly above the first layer. The former type of stru
ture is that of a close-packed-hexagonal arrangement, w
the latter is the fcc structure. The fcc structure was adop
because unlike the hexagonal arrangement there are no d
channels for dispersion orientated along the gradient in
plied pressure, which runs from the top to the bottom of
arrangement. The packed bed consisted of 16 layers, with
3632 ©2000 The American Physical Society
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FIG. 1. Schematic representation of the experimental setup. Also shown is the line located 20 mm below the first layer of sphe
which measurements of gas concentration were made.
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spheres in the 16th layer lying directly above those in
first layer.

The pack bed was enclosed within a hexagonal ves
with across-corners width equal to 17 sphere diameters,
structed from plywood, and lined with a flexible polyme
based material into which the contact surfaces of adjac
spheres could be imbedded, thus preventing leakage o
and tracer gas there. The first and corresponding equiva
layers consisted solely of whole spheres whilst in the seco
third, and corresponding equivalent layers partial sphe
were required adjacent to the inside of the vessel to main
constant packing density and arrangement and to pre
leakage. The bottom of this packed bed was held in place
a punched plate having holes of diameter 3 mm with cen
regularly spaced at 5-mm intervals in a triangular arran
ment.

The influence of the surroundings on the air flow throu
the rig was reduced by the placement of two closely pac
beds of plastic granules with approximate diameter 3.5 m
above and below the bed, and by conducting the experim
within a closed temperature-controlled room. Air was suck
through the arrangement using an electric fan and the re
ing pressure difference across the packed bed of 2 Pa
monitored using an inclined manometer. The upper b
served to make uniform the air flowing into the packed b
of spheres.

A tracer gas (SF6) was released continuously and isok
netically as a SF6-air mixture ~10% SF6 by volume! at 0.2
ml s21 from a pipe with internal diameter;3 mm, at a
height of about 1.5 mm above the central sphere in the 1
~top! layer. SF6 has a density ofr56.26 kg m23 and is non-
buoyant. SF6 was chosen as the tracer gas because of ea
detection. The effects of nonbuoyancy are not expected t
significant as the predicted settlement time is much lon
than transport times due to advection by the fluid.

The concentrations of gas emerging from the packed
was then measured and recorded at a height 20 mm b
the first~bottom! layer, along the line depicted in Fig. 1. Th
e
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sampler continuously drew off the tracer-gas-air mixture a
flow rate equal to the velocity of the air flow. The sampl
had a response time of 1 s and a recovery time of 2 s. Sta
tistically stationary profiles of mean gas concentration w
obtained from 3-min time histories of measured concen
tion. Measured concentrations are accurate to within62%.

III. NUMERICAL SIMULATIONS

A. Lattice-Boltzmann simulations

This section provides a brief description of the lattic
Boltzmann method~LBM ! and its application to the simula
tion of flows through close-packed beds of spheres. M
detailed descriptions of the particular lattice-Boltzmann~LB!
formulation adopted, commonly denoted byD3Q15, can be
found in Qianet al. @9# and Chen and Doolen@10#.

In the LBM, a discrete analog of the linearized Boltzma
equation

f i~x1ci ,t11!2 f i~x,t !52
1

t
@ f i~x,t !2 f i

eq~x,t !# ~1!

is solved for the number density of molecules at nodex at
time t, f i(x,t), of a gas of ‘‘fictitious’’ molecules that trans
late from node to node on a cubic lattice with a discrete
of velocitiesci . In the present model there are six velociti
of speed 1 corresponding to the~100! directions, eight ve-
locities of speed) corresponding to the~111! directions and
one ‘‘rest’’ particle of speed 0. The distributionf i(x,t) is
related to the fluid densityr and the momentum density,j
5ru, by

r5(
i

f i , j5(
i

f icu ~2!

and the nondimensional kinematic viscosity of the fluidn is
related to the nondimensional relaxation timet by n5(2t
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21)/6. Appropriate forms for equilibrium distributions
f i

eq(x,t), are taken from Qianet al. @9#,

f i
eq5t irS 11

1

cs
2 ~ci•u!1

1

2cs
2 ~ci•u!22

1

2cs
2 u2D , ~3!

wheret i52/9 for rest particles, 1/9 for particles with spee
1, and 1/72 for particles with speed). The speed of sound
cs51/).

Experimental measurements of dispersion, presente
Sec. V, indicate that the dispersion of the tracer gas did
extend significantly in the lateral direction beyond abo
three sphere diameters from the release position. Thi
much less than the half-width of the experimental rig, in
cating that edge effects, arising from the finite size of
packed bed, can be neglected. Consequently in the nume
simulations the packed bed can be taken to extend infinit
all directions. This was implemented by modeling only flo
within the basic fcc unit cell, subject to periodic bounda
conditions. The difficulties associated with comparing p
dictions for dispersionwithin the packed bed with the mea
sured dispersion beneath the bed is discussed later, in Se

The pressure does not vary significantly across the
cell and so its effects are well approximated by a cons
body forceF. This was implemented by calculating the equ
librium distribution functions with an altered fluid velocit
u1tF/r, rather than with the actual fluid velocityu @11#.

Each solid sphere is defined by a spherical surface wh
cuts some of the links between the lattice nodes. The fi
tious gas molecules moving along these links were reflec
so that, in a single time step, they return to the lattice no
from where they came with an opposite velocity. As a res
a no-slip velocity condition is imposed midway along t
link. It is this easy implementation of the no-slip veloci
condition by the ‘‘bounce-back boundary scheme’’ whi
makes the LBM ideal for simulating fluid flows in compl
cated geometries. The bounce-back scheme is, however,
first order in numerical accuracy at the boundary@12# and so
degrades the LBM which for the interior nodes is seco
order in numerical accuracy. Bounce-back schemes tha
second-order accurate have been proposed@13# but cannot be
readily implemented for complicated geometries. For t
reason they are not employed here.

The discrete representation of the spheres becomes
spherical with the increasing sphere-radius-to-node spa
ratio. However, the size of the lattice required to obtain
curate results is primarily controlled by the need to reso
the flow within the voids between neighboring spheres. T
results of numerical simulations indicated that when v
cross-sectional areas~approximately triangular in shape!
contained more than about1

2 325325 nodes, grid indepen
dent results~errors of less than 5%! were obtained for Re
,120. This was achieved by having 10031003100 nodes
within a unit cell. The maximum mean velocity was less th
the speed of sound thus ensuring incompressible fluid
namics.

The initial value problem was solved in which the flu
velocity was zero throughout the domain and a body fo
was applied at timet50. In the case of periodic solutions
the calculations were continued until the mean flow~aver-
aged over the flow domain! at successive equivalent time
in
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within the cycle varied by less than 0.01%. Quasiperio
~i.e., flows which did not display periodicity on the tim
scales of the simulations but which had a discrete Fou
spectrum! and chaotic solutions were taken to be converg
when both the mean flow and the velocity variance varied
less than 1% during the last 25% of the run. Typical
200 000 time steps were required. It should be noted here
throughout the paper that because of the difficulties ass
ated with the correct identification of quasiperiodicity, th
term ‘‘quasiperiodicity’’ is used in the aforementioned sen
which does not distinguish between the strict definition
quasiperiodicity in terms of a finite number of incommens
rate Fourier modes and time histories containing many
ferent commensurate modes.

B. Simulation of particle trajectories

There are two possible approaches to the modeling
particle dispersion. In the Eulerian approach a diffusio
advection equation for the time evolution of a scalar
solved whilst in the Lagrangian approach mean concen
tions of a scalar are calculated by ensemble averaging
the simulated single independent tracer-particle trajector
In this study the Lagrangian approach is adopted because
boundary conditions do not need to be specifieda prori in an
ad hoc fashion, the approach does not introduce numer
diffusion, and because it can be readily extended to ‘‘heav
and Brownian particles.

The trajectories of tracer particles (xp ,up) were simulated
by numerical integration of the tracer advection equation

dxp

dt
5up~xp ,t !, ~4!

where to filter out the effects of the staggered momentu
inherent in the solution to theD3Q15 model@14#, the particle
velocity up is taken to be the local fluid velocity, tempora
averaged over two successive iterations of the lattice Bo
mann model. This quantity is known only at the nodes of
computational grid and at discrete times. An approximat
to this quantity at the particle location at timet was obtained
by linear interpolation from the grid nodes to the partic
location and from the solutions for timest8 andt811 to time
t wheret8<t,t811.

Close to the boundaries the spatial resolution of the gri
not sufficient, nor can it ever be, for an accurate determi
tion of particle trajectories. These inaccuracies, which
compounded by the interpolation, can result in the nonph
cal deposition of some tracer particles. To overcome t
difficulty the flow at the boundary nodes, which is predict
to vanish, was given a small normal outward compone
The magnitude of this normal component was taken to
constant throughout the flow domain, equal to the smal
value which prevented all nonphysical deposition. This w
typically two or more orders of magnitude less than the m
nitude of the velocity at the nearest node within the flo
The simulated trajectories of tracer particles were found
be insensitive to a tenfold increase in the value of the o
ward velocity component.
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IV. PREDICTED FLOWS AND TRACER-PARTICLE
DISPERSION

The nature of the flow, whether steady, time oscillato
or chaotic depends on the Reynolds number Re. Here R
based on the radius of a sphere and the magnitude of
volumetrically and temporally averaged fluid velocity with
the voids. The root mean square~rms! of the magnitude of
the volumetrically averaged fluid velocity is used to define
second Reynolds number Re8, characterizing the tempora
fluctuations in velocity.
For low Reynolds numbers, Re<14, the fluid flow is pre-
dicted to be steady but very complex due to the comp
geometric structure of the packed bed which creates v
tortuous pathways for fluid flow. A natural quantity to stat
tically characterize the fluid flow associated with each no
in the computational grid is the kinetic energy,k
51/2ru•u. Figure 2 shows that the distribution of norma
ized kinetic energyE5k/kmax, wherekmax denotes the maxi-
mum kinetic energy. It is seen that over roughly 3 orders
magnitude (1024,E,1021.5) the distributionn(E) of E
follows a power law with n(E);E2a, where a50.64
60.05. Intriguingly, the same exponent,a50.6460.05, was
found @15# to characterize the distribution ofE in the Stokes
flow forming the ‘‘conducting backbone’’ at the threshold
percolation in two-dimensional random porous media. A
dradeet al. @15# suggested that this power law distributio
indicates that the local kinetic energy is sensitive to the
ometry of the pore structure. Consequently, the ‘‘stagna
zones play a significant role in transport through the pac
bed, in contrast with the dangling ends for the analog
electrical transport problem@16,17#.

In addition to the steady flows, six other flows were sim
lated: a flow with Re'15.4, which was time periodic in th
direction of the applied pressure gradient and steady in
transverse directions; flows with Re'19.8 and Re'22.0
which were time periodic in both the longitudinal and tran
verse directions; a ‘‘quasiperiodic’’ flow with Re'29.5; and
chaotic ~low-Reynolds-number turbulent! flows with Re
'42 and Re'113. Characteristic features of the these flo
are shown in Fig. 3.

FIG. 2. The distribution of normalized local kinetic energy for
steady flow with Re!1.
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The corresponding phase diagram is shown in Fig. 4. T
same sequence of transitions but with different critical R
nolds numbers has also been reported by Hill and Koch@6#
who used a LBM to simulate flows through packed beds
spheres in a fcc arrangement with the gradient in app

FIG. 3. Predicted fluid velocities histories at~0.5,0,0! for a pe-
riodic flow with Re'22.0 ~bottom!, a quasiperiodic flow with Re
'29.5~middle!, and a turbulent flow with Re'113~top!. Theu and
v components of velocity aftern iterations of the LBM are indi-
cated by solid and dashed lines, respectively. To remove the ‘‘s
gered momentum,’’ velocities have been averaged over two suc
sive iterations.
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pressure to be in the on-axis~100! direction. For this case
unsteadiness first occurs at Re'32.4@18#. This indicates that
the on-axis flow is more stable than the~111! flow. For
close-packed arrangements of spheres it is the large ve
ties in the gaps rather than symmetry breaking of the fl
about any single sphere due to the velocity disturbance
the other spheres or wake instabilities which destabilize
flow. The velocity in the gaps is related to the reciprocal
the effective cross-sectional area of the gap, which is)
2p/2)R2 when the applied gradient in pressure is the~111!
direction and (42p)R2 when it is in the~100! direction,
whereR is the sphere radius. The critical Reynolds numb
for the ~111! direction can therefore be expected to be a
proximately ()2p/2)/(42p)'5.3 smaller than for the
~100! direction, which is not too dissimilar from the resul
of the numerical simulations.

Although the results of numerical simulations suggest t
the branch of the phase diagram identified in Fig. 4 is rob
to perturbations with amplitudes large compared to the a
plitude of the flow oscillations, it is possible that other les
stable branches also exist, as is the case when the ap
pressure is in the~100! direction @18#. There was no indica-
tion of their being any period-multiplying transitions, in sta
contrast with the results of numerical simulations using
LBM for two-dimensional flows through periodic arrang
ments of cylinders@7#. Koch and Ladd@7# reported observ-
ing period doubling when the pressure gradient is near
primary axis and transitions to odd multiples when the pr
sure gradient is along the diagonal of the array.

Figure 5 shows that in contrast with the steady flow,
normalized local kinetic energy of the chaotic flow has
log-normal distribution over roughly 3 orders of magnitu
in analogy with the log-binomial distribution for the loca
currents found in the corresponding random resistor netw
@16,17#. The distinction between the binomial distributio
and the familiar Gaussian approximation is only of impo
tance when calculating higher moments. This arises bec
the moments are actually exponential moments when

FIG. 4. Phase diagram. Calculations are presented by solid
The solid line serves only as a guide for the eye. The symbolS,
PL , P, Q. P., andC denote flows which are stationary, time pe
odic in the longitudinal direction, time periodic in both the longit
dinal and transverse directions, quasiperiodic, and chaotic.
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quantities are expressed in terms of the fundamental vari
x5 ln k/ln kmax. The log-normal distribution leads naturall
to an infinite set of exponents being required to describe
moments of kinetic energy. Consequently in stark contr
with the steady flow case, the kinetic energy distribution c
not be characterized by a unique velocity scale.

Several factors may contribute to the dissimilarities b
tween the scaling of the steady and turbulent flows. At l
values of Re, there is a tendency for the fluid at the lo
void scale to preserve the parabolic shape of the velo
profiles even when the fluid is confined to very tortuo
pathways. At high values of Re, however, the irregular g
ometry is very effective in producing sudden and drama
changes in the directions and magnitudes of the fluid velo
ties, thus distorting their parabolic profile at the local level
the void space. Furthermore, at high values of Re the n
linear advection term in the Navier-Stokes equations beco
relevant and can lead to vortices and flow separation.
example of the energy-frequency spectraS(v) for the cha-
otic velocity fluctuations is shown in Fig. 6. The spectra h
a dissipation range characterized byS;v25 and there is
some suggestion of an inertial subrange, where over a na
range of frequencies,S;v25/3. The absence of a well
defined inertial subrange is not surprising given the low R
nolds number of the flow and the strong anisotropy of
larger scales of motion coupled with the presence of a g
dient in the mean flow@19#.

In the absence of molecular diffusion, tracer partic
emitted from a point source into a steady flow cannot d
perse whilst for the time-oscillatory flows, tracer-particle d
persion is severely constrained because there cannot be
transport across planes of symmetry. However, there ca
transport of tracer particles across planes of symmetry w
the transverse component of fluid velocity fluctuates beca
then the instantaneous velocity field is no longer constrai
by symmetry. Thus, an abrupt increase in dispersion is p
dicted to accompany the onset of transverse velocity fluc
tions.

The predicted dispersion of tracer-particle trajectories i
time-oscillatory flow with Re'22 is shown in Fig. 7. The
anisotropy of the dispersion arises primarily from the p

ts. FIG. 5. The distribution of normalized local kinetic energy for
chaotic flow with Re'113.
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ticular time-oscillatory mode of the flow realized in the n
merical simulations. Two components of this flow have d
similar amplitudes, indicating that at least two such unste
modes are possible. The anisotropy is also a consequen
the periodicity of the tracer-particle tracks, a Lagrang
property of the fluid, being different from the periodicity o
the Eulerian flow. This can arise when both the streamw
and lateral components of velocity are unsteady. Figur
shows that in the far field the rms spread of tracer particles
closely follows a power laws;db, whered is the distance
from the source measured along the center line of the plu
~i.e., measured normal to the horizontal planes of spher!.

FIG. 6. Energy-frequency spectraS(v) for the velocity fluctua-
tions at ~0.5,0,0! in the chaotic flow with Re'113. Inertial sub-
ranges and dissipation ranges are indicated.
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For the major axis of lateral dispersiona50.5160.01 whilst
for the minor axisb50.360.01. The far-field dispersion is
not, however, anomalous but Fickian, i.e.,s2}t where t is
the transit time.

For the chaotic flow with Re'113, the spread of trace
particles becomes isotropic beyond the third horizontal pl
of spheres beneath the source ands;d1/2, as shown in Fig.
8. In the far field diffusion is again Fickian and so, contra
to most cases of dispersion in inhomogeneous turbule
can be described by a diffusion-advection equation. T
Fickian characteristic is most probably a consequence of
length scales and time scales on which transport occur b
much larger than the scales of variations in the velocity fi
experienced by the tracer particles. In this context it is no
worthy that dispersion due to molecular diffusion in Stok
flows through porous media is also predicted to be Fick
@3,20#.

FIG. 7. Locations in the plane containing the lower poles
spheres in the first layer through which the simulated trajectorie
tracer particles passed for a time-oscillatory flow with Re'22.0.
The particles were released from a continuous source located
above the central sphere in the 16th layer.

FIG. 8. The rms spread of tracer particless in a periodic flow
with Re'22 ~3, major axis of lateral dispersion;1, minor axis of
lateral dispersion! and the chaotic flow with Re'113 ~d!. Dis-
tancesd are measured from the source in the direction normal to
horizontal planes of spheres. Model predictions are shown for
persion on the horizontal planes~between the first and 100th! con-
taining the centers of the spheres. The power-law regimess;d0.5

ands;d0.3 are indicated.
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Numerical instabilities inherent in the LB approach pr
clude the possibility of simulating directly flows with R
@100. To test whether Fickian behavior persists at hig
Re, a subgrid model@21# was utilized with a Smagorinsky
constant,Cs50.1. In this approach a space-filtered partic
distribution is defined those dynamics are governed b
LBM with a space-dependent relaxation time. Using t
subgrid model a flow with Re;2200 was simulated. The
dispersion of a tracer, due to the resolved scales of turbu
fluid motions, was found to remain Fickian in the far fiel
Consequently, if a transition to anomalous dispersion d
occur then it is predicted to occur at larger Re.

FIG. 9. Six replicate profiles of mean concentrationsc measured
20 mm below the lower poles of the spheres in the first lay
Distancesd are measured from the central sphere in the first la
along the line shown in Fig. 1. The source strength is denoted bcs

and the sphere radius byr. Measured concentrations are accurate
within 62%.
-
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V. MEASURED AND PREDICTED MEAN
CONCENTRATIONS

Flow within the experimental packed bed is predicted
have Re'113 and Re8'5.4 and be chaotic~weakly turbu-
lent!. Replicate profiles of mean concentrations measured
mm beneath the first layer of spheres are shown in Fig
The replicates were made at 24 h intervals during which ti
the air flow through the packed bed was maintained. T
source of the scatter in the experimental data is unclear
could indicate that very-low-frequency components a
present in the flow.

A comparison of predicted and ensemble average~over
the six replicates! measured concentrations is shown in F
10. The measurements were made beneath the packed b
the wakes generated by the spheres in the first layer. T
accounts for the nonvanishing measured concentration
locations directly beneath the spheres. In contrast and
cause of the imposition of periodic boundary condition
model predictions are shown for locations within the pla
containing the lower poles of the spheres in the first layer.
account for the difference between volumes of free sp
beneath the packed bed in the experiment and the void
umes between the spheres in the computational domain,
dicted concentrations have been reduced by a factorAv /An

512p/(2)), where Av is the cross-sectional area of
void formed between three neighboring spheres in the ap
priate horizontal plane andAn is the area of the triangle
defined by the centers of these spheres. In spite of th
differences, it is seen that the agreement between meas
and predicted mean concentrations is very good. Particul
well predicted is the extent of the dispersion and the gra
ents concentration.

VI. CONCLUSIONS

This paper has reported numerical studies of fluid fl
through a close-packed bed of spheres and on experime

r.
r

yer
and its

l
e
is denoted
FIG. 10. A comparison of ensemble-averaged measured concentrations~d! 20 mm below the lower poles of the spheres in the first la
and predicted~3! volume-averaged concentrations in the plane containing the lower poles of the spheres in the first layer. The line
symmetry equivalents along which the measurements and predictions were made is indicated. Distancesd are measured from the centra
sphere and have been rendered nondimensional using the sphere radiusr. Also shown~left! are the locations in the plane containing th
lower poles of the spheres in the first layer through which the simulated trajectories of tracer particles passed. The source strength
by cs . Measured concentrations are accurate to within62%.
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and numerical studies of tracer-particle dispersion. The n
malized local kinetic energy of the steady flow, which exi
at low Reynolds numbers, Re,14, is predicted to have a
power-law distribution. This indicates that the stagnant zo
play a significant role in transport through the packed b
and so provides a three dimensional companion for the t
dimensional counterexample to the paradigm of electr
flow in random resistor networks and transport of mass
momentum in disordered porous media@15#.

The steady flow is predicted to become unsteady at
;14, resulting in time-periodic oscillations in the compone
of velocity parallel to the direction of the gradient in applie
pressure. At Re;20, the transverse components of veloc
are predicted to fluctuate, resulting in quasiperiodicity
Re.22 and eventually chaos at Re;40. It was suggested
that this sequence of transitions, but not the critical Reyno
numbers, is independent of the direction of the gradien
applied pressure. The normalized local kinetic energy of
chaotic flow has a log-normal distribution in analogy wi
the log-binomial distribution of local currents in the anal
ng

tt

7

us
r-
s

s
d
o-
l
d

e
t

r

s
n
e

gous electrical transport problem@16,17#. Consequently, the
kinetic energy distribution cannot be characterized by
unique velocity scale.

Tracer dispersion in the flows with fluctuating transver
velocity components is predicted to be Fickian in the far fie
and so, contrary to most cases of dispersion in inhomo
neous turbulent flows, can be described by a diffusion mo
Model predictions for tracer-particle dispersion in a chao
flow with Re;100 were found to be in close agreement e
periment.
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